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.;- Central  Research Institute for Physics, POB 49, H-1525 Budapest 114, Hungary 
$ Fachbereich Physik, Freie Universitat Berlin, Arnimalle 14, D- 1000 Berlin 33, Federal 
Republic of Germany 

Received 19 August 1988 

Abstract. The energy spectra of the one-dimensional Bose gas and Heisenberg chain in 
an  external field (chemical potential in the case of the Bose gas and  magnetic field in the 
case of the Heisenberg chain) are  calculated. It is found that,  at general values of the 
external field, the spectra are not of the form expected on the basis of conformal invariance. 
The conformal structure can be recovered only if some extra conditions are imposed on  
the size of the system and  the external field. I t  is argued that these additional conditions 
must be satisfied when taking the continuum limit in order to arrive at  a conformally 
invariant theory.  

1. Introduction 

Progress in understanding the critical state of two-dimensional classical systems is 
greatly enhanced by the hypothesis of conformal symmetry put forward by Belavin et 
a1 (1984). This large symmetry was shown to be described by an infinite-dimensional 
algebra: the Virasoro algebra for which the representation theory yields a complete 
abstract classification, according to a conformal anomaly number c (Friedan et a1 1984). 
The scaling dimensions of primary conformal order parameters can be then obtained 
by the so-called Kac formula. 

A further step was made when Blote et a1 (1986) and Affleck (1986) showed that 
the conformal anomaly and scaling dimensions are directly accessible through the 
finite-size effects of an affiliated system defined on iiifinitely long but finitely wide 
strips at criticality. Finally Cardy (1986) showed that, as another consequence of 
conformal invariance at criticality for systems with modular invariance (with torus 
boundary conditions), the form of the scaling dimensions in a theory where c is known 
is completely fixed. 

This succession of theoretical results has prompted many groups of workers to seek 
confirmation either numerically or using exactly solvable models. We shall not dwell 
on numerical works which are numerous (von Gehlen et a1 1986, Igl6i and Zittartz 
1988, etc) but concentrate our discussion on the study of systems solvable by the 
method of the Bethe ansatz wavefunction. The prototype is the well known X X Z  
chain of N spins with various boundary conditions (Hamer 1986, de Vega and Karowski 
1987, Woynarovich and Eckle 1987, Woynarovich 1987, Alcaraz, Barber and Batchelor 
1987, etc). Through this model of a spin chain many of the two-dimensional classical 
systems can be discussed, such as the Potts, Ashkin-Teller, O ( N ) ,  etc, models. On 
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the whole one may say that the extraction of the central charge and scaling dimensions 
is a smooth procedure and leads to expected results. 

Recently Bogoliubov et a /  (1986, 1987) extended the study to another class of X X Z  
chains: chains with periodic boundary conditions but in the presence of a magnetic 
field. They also consider the case of the one-dimensional Bose gas with delta function 
pair potential and finite chemical potential. They concentrate on the discussion of the 
influence of the external field on the scaling dimensions essentially and the behaviour 
of correlation functions. 

The object of the present work is to show that, within the framework of the two 
models considered by Bogoliubov e f  a/ (1986, 1987), the obtaining of the conformal 
quantities through the finite-size method should be done with care. We use a systematic 
procedure developed earlier (de  Vega and Woynarovich 1985, Woynarovich and Eckle 
1987) to show that the approach to large size of a system may not necessarily be smooth 
and, in fact, proceeds by discontinuous steps causing an apparent violation of the 
expected behaviour. We shall also show that a remedy to this behaviour is to allow 
some quantities to take only rational values, but not irrational ones, before taking the 
thermodynamic limit. 

This aspect leads us directly to question the procedure of constructing the continuum 
limit of a lattice model. Presumably a naive construction would fail to yield a consistent 
answer for conformal invariant quantities characterising the system or the quantum 
field theory which one recovers at the end of the continuum limit. Since this field 
theory is more or  less the universal representation of a whole class of lattice systems 
having the same conformal characteristics, it is important to know how to construct 
it properly. 

Before discussing the two models in detail let us briefly review the generalities 
concerning the finite-size effects of critical systems. A one-dimensional quantum system 
is critical at zero temperature if the long-distance correlations decay algebraically. In 
particular such behaviour is characteristic of gapless systems with a linear dispersion 
relation. However, some correlation functions may also show, besides the usual power 
law decay, spatial oscillations due to intermediate processes involving excitations of 
particles from one Fermi point to the other. The operators responsible for these 
processes are not conformal ones but are shown to be (Bogoliubov et a1 1986, 1987) 
weighted sums of conformal operators. The relations between the spectrum of the 
one-dimensional quantum system on a strip of finite width L and the bulk scaling 
indices are given by (Bogoliubov et a /  1987) 

2TVF 
L 

E, , -E ,=-(X,+N++N-)  

2 T  
L 

P,, =-(s,+ N + -  N-)+2DkF 

where E, and P,, are the energy and momentum of the nth excited state, v F  is the 
Fermi velocity and Nt, N -  are non-negative integers. D is the number of particles 
excited from the left Fermi point to the right one and finally x, and s, are the scaling 
dimensions of the corresponding bulk operators. The ground-state energy -Eo has the 
usual form (Blote et a1 1986, Affleck 1986) 

Eo= L E , - T v F c / ~ L  (3) 
E ,  being the ground state energy density of the infinite system and  c the conformal 
anomaly characterising the system. 
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To illustrate the extended finite-size effects put forward in (1)-(3), Bogoliubov et 
a1 (1987) have worked on the one-dimensional Bose gas with delta function pair 
potential and  finite chemical potential, as well as on the X X Z  Heisenberg chain in a 
magnetic field, and discussed the dependence of the bulk scaling dimensions of the 
external field. In  the following we shall apply the systematic method of de  Vega and  
Woynarovich (1985) and  Woynarovich and Eckle (1987) to derive in detail the finite-size 
corrections to these two one-dimensional quantum systems. The upshot of this calcula- 
tion is the occurrence of non-conformal terms in equations of the type (1)-(3). However, 
as will be explicitly shown, appropriate restrictions may be required in order to recover 
the equations predicted by conformal invariance. These restrictions have physical 
grounds and  pave the way for performing a continuum limit of the theory. 

In appendix 1, we show that the main conclusion of this paper can be observed in 
a simple system: the X X  spin chain in a magnetic field. The case of an X Y  chain in 
a transverse magnetic field has been treated by Hoeger er a1 (1989,  where incommensur- 
able and oscillatory structures appear. This should help the reader not too familiar 
with Bethe ansatz techniques to understand the scope of the paper which is by no  
means restricted to non-interacting systems. Appendix 2 describes an  attempt to 
construct a continuum limit in a simple situation to demonstrate to the reader how 
delicate the procedure really is. 

2. Finite-size effects in the energy spectra 

As is well known, both the Bose gas, defined in a box of length L with a chemical 
potential h > 0 and a repulsive delta function interaction of strength K 2 0 

and  the anisotropic Heisenberg chain of N sites with anisotropy cos 0 and external 
magnetic field h (0 G h G (1 +cos 0 ) )  

N 

% H C =  ( -S :Sj r+ , -S :S: , ,+co~ 0S:Sf+ , -hSj ) -$N(cos  6 - 2 h )  (5) 
, = I  

are solvable by the Bethe ansatz ( B A )  method. 
An eigenstate of 2YBG containing M bare particles is completely described by the 

M parameters ~ ~ ( a  = 1,2,  . . . , M )  satisfying the algebraicequations (the BA equations) 

I 77, - T p  LT, = 27rJm - 2  C tan- ~ 

M 

P = l  K 

where J ,  = ( M  + 1)/2 (mod 1) are the quantum numbers of this state. The energy and  
momentum of the state are, respectively, 

2 7  
P = -  J, .  

L a = l  
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Analogously, an eigenstate of Xt,< is also defined by M spin waves of parameters 
7 ,  obeying the Bethe ansatz equations 

77u - 77p 
2 

2.1 

= 27rJ, + 2 tan-’ cot 0 tanh ~ 

2 2 p = 1  

where J ,  = ( M  + 1)/2(mod 1) are the quantum numbers of this state. The energy and 
momentum of the state are, respectively, 

Finally, N being the total number of sites on the chain, the total magnetisation of the 
chain is 

,% s z =  ~ ; = $ N - M .  
1 - 1  

We observe that the two sets of Bethe ansatz equations are very similar in nature. We 
shall outline our calculations for the Heisenberg chain, but the results can be readily 
translated to the case of the Bose gas. 

We start by specifying the set of numbers J,. We choose two numbers J +  and J - ,  
both equal to M / 2  mod 1, so that J + - J - =  M and - i ( J ’+J- )  = D. For J ,  we take 
all the numbers equal to ( M  + 1)/2 mod 1 between J +  and J - .  It is not hard to see 
that this corresponds to a Fermi sea of M particles with D particles placed from the 
left Fermi point to the right one. Later on one can introduce holes and  particles by 
removing J ,  from the sea and introducing J ,  outside the sea. In order not to change 
M and D, however, the number of holes and particles should be equal both in the 
vicinity of the right, and  in the vicinity of the left, Fermi point. 

As in the earlier works (de  Vega and Woynarovich 1985, Woynarovich and Eckle 
1987) we define the density of roots for the finite system: 

with 

0 
po( 7 7 )  = 2 tan-’ (cot 5 tanh z )  

With these notations the Bethe ansatz equations are 

We use the Euler-Maclaurin formula to write up  an integral equation for ~ ~ ( 7 ) :  
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The integration boundaries A' are defined through 

z N ( A = )  = J * /  N. 

Applying (17) to (12) and (13) one obtains 

403 1 

(18) 

-- 1 d K ( 7 - K )  

d77 

(19) 1 \ *  

- J ~ ( 7  - ? ' ) g N ( v ' )  drl' 

K ( ? )  =d4o(?)/d?.  (20) 

\ -  

where the kernel of the integral is given by 

This linear integral equation is completed by the equations determining A' and A -  
(obtained from (12), (13) and (18)): 

Due to the linearity of (19) uN can be written in the following form: 

where a( 77 1 A + ,  A-)  and p (  77 I A+,  A-)  are defined by the equations 

and 

It will become clear later that it is sufficient to define A' with an accuracy of order 
I/N. Therefore we may replace aN by a(?  lA+,  in (21) and (22): 

The equations (23)-(27) form a closed system and determine completely the state under 
consideration. 

By the application of (17) to (10) and using also (23) we have for the energy 
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and 

E ~ (  7) being the bare energy 

If we make the limit N + CO keeping M /  N + p, D/ N + 6 finite, ~ ( p ,  6)  will give 
the energy density of the infinite system. In the ground state of the infinite system 
e ( p ,  6 )  is minimal with respect to p and 6. This minimisation can be performed, and 
E ( M / N ,  D I N )  be expanded around the minimum. This is a somewhat lengthy but 
straightforward procedure and  leads to the following. At the minimum we have 6 = 0 
and A' = -*I- = A. Denoting the minimal value of ~ ( p ,  0) by E = ,  and the value of p 
for which ~ ( p ,  0) reaches its minimum by p ( h ) ,  we finally obtain 

where [('I) is the dressed charge (Korepin 1979) at the Fermi surface, the dressed 
charge function 5( 7) being defined through the integral equation 

t(77) = 1 - l -  2 T  { - 2  ' K ( v  - 77')5(77') d77'. (33) 

Without spoiling the accuracy we may replace .I' by A, >I- by -,I and ( T , ~ ( A + )  by 
g(iZl.1, -A) in (28). Therefore we obtain 

1 e(A, -A) 
E ( M ,  D ) - N & , = - -  N a(hlA, -'A) 

For the momentum of the state considered (11) gives 

2 n  
N P ( M ,  D )  =- MD. (35) 

The above calculations can be easily extended to the case where particle-hole-like 
excitations are also introduced in the vicinity of the Fermi points. We characterise 
the holes and particles in the vicinity of J' by the quantum numbers J l  and J i :  

Jt=J'-nh+ (36) 

J ;  = J'+ 11; (37) 

J , = J - + n ,  (38) 
(39) 

respectively, and  the holes and particles near J -  by the quantum numbers 

J - =  J - - n -  
P '  
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The numbers n t ,  n,' > 0 are half-odd integers. In addition to (34) and (35) we get the 
contributions 

( N + + N - )  
1 e ( A , - A )  - 

N a ( A  I A, -A) 

and 

2 T  
N 

-- ( N +  - N - )  

to the energy and  to the momentum, respectively, whereby 

N' = C ( n t +  n,'). 

(Note that N +  ( N - )  are integers since the number of J i ( J , )  is equal to the number 
of J l ( J g ) . )  The expression (40) justifies the notation 

e ( A ,  -A) 
V F  = 

2 ~ a ( h l A ,  - A ) '  

So we have finally the expressions for the energy and momentum 

(44) 
2 7  
N 

P( M,  D )  = - ( M D  - N + + N - ) .  

As we said, the treatment of the Bose gas is practically the same as that of the 
Heisenberg chain. Actually all the formulae remain valid, if we replace N by L a n d  take 

Po(77) = 77 (45) 

and  substitute P by - P  (compare (4), (6),  (7) and (8) with ( 5 ) ,  (9),  (10) and (11)). 
So for the Bose gas one has 

2T  
L 

P ( M ,  D ) = - ( - M D + N + - N - )  

where E,, U, .$(A) and p ( h )  are now the corresponding quantities of the Bose gas. 

3. Non-analytic finite-size behaviour of the spectra 

For both the Bose gas and  Heisenberg chain the finite system is in the ground state if 
N+,  N -  = 0 and if ( M  - Lp(  h))' and ( M  - N p ( h ) ) ' ,  respectively, is minimal. We 
denote by MO the particle number (Bose gas) or  spin wave number (Heisenberg chain) 
in the ground state (the following equations are given for the Heisenberg chain case 
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only: the corresponding equations for Bose gas are readily obtained by replacing the 
number of sites on the chain N by the length of the system L ) :  

The braces [ 3 and { } denote integer and fractional parts, respectively. The ground 
state energy is then given by 

(51) 

This expression is not of the conformal form (3) since the coefficient of the term 
proportional to 1 / N  is still dependent on N. The first gap in the energy connected 
with the change in spin wave number (particle number in the case of the Bose gas) is 
determined by MO+ 1 if { N p  ( h ) }  < $ and by M,, - 1 otherwise: 

which is also not immediately of the conformal form (1) for the same reason. 
To illustrate the analytical results of the previous section we have solved numerically 

the B A  equations for long ( N  = 150, 152 , .  . . , 170) Heisenberg chains. We have chosen 
0 = r / 3  as the higher-order corrections are expected to decay fast at this value of 0 
(Woynarovich and Eckle 1987). Our results for h = 1.3282 (which corresponds to 
p (  h )  = 0.174 63 or A = 0.35) are shown in figure 1. Full circles denote the non-analytical 
part of the ground-state energy as a function of N,  in units of r v F / 6 N ,  i.e. ( E r C -  
N&, )6N/ ( ruF)+ 1. Open circles correspond to the first gap in units of 2 r u F / N ,  i.e. 
(E; ' -  E r C ) N / 2 m F .  The broken curves and lines show the theoretical expectations 
if N were continuous (as is the case for L in the Bose gas). 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

Figure 1. Non-analytic finite-size corrections in the anisotropic Heisenberg chain at 0 = 7r/3 
and  h = 1.3282. Full circles denote the non-analytic part of the ground-state energy as  a 
function o f  N ,  in units of m , / 6 N ,  i.e. 

( E f C '  - E ,  N ) 6  N /  TL', ) + 1. 

Open circles correspond to the first gap  in units of Z T L ' ~ /  N,  i.e. 

( E ? <  - E;"')N/?r;t . ,  . 
The broken curves and lines show the theoretical expectations if N were a continuous 
number.  M ,  is the number of spin waves minimising the energy at  the given N and  h. 
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4. Discussion of the results 

We have to note that the above non-analytic finite-size effects are not consequences 
of the Bethe ansatz; rather, they should be present in any system, where the particle 
number of the ground state depends on external parameters such as chemical potential 
or magnetic field. As examples we refer to the one-dimensional non-interacting spinless 
Fermi gas with Hamiltonian 

and the X X  chain in a magnetic field with Hamiltonian 
ry 

%= - C (S,'S>+, + S:S:+, + h S f )  
1 = l  

(54) 

which can be solved with more elementary techniques. These models show the same 
or similar non-analytic finite-size effects as the Bose gas or the Heisenberg chain (cf 
appendix 1). The formal reason for these non-analyticities is that the particle number 
M O  in the finite system as a function of the size and  external parameter cannot be an  
analytic function of the external parameter since MO must be an integer. However 
simple this reason is, it seems to spoil the conformal structure of the spectrum and 
gives rise to the question whether these systems are conformally invariant or not. 

In answering this question we recall that in lattice systems conformal invariance 
is an approximate symmetry only, which is valid on a length scale that is large compared 
to any other scale in the system. In other words, only appropriate scaling limits of 
these models are conformally invariant. I f  the energy spectrum is of the form expected 
on the basis of conformal invariance, this indicates that the model has a conformally 
invariant scaling limit. If the conformal structure can only be restored by imposing 
extra conditions on the system, these extra conditions should also be obeyed in 
constructing the scaling limit. 

In the case of the Bose gas the conformal structure is restored if we choose 
L = m / p (  h )  ( m  being only an  arbitrary integer). Then MO = m, and denoting M - MO = 
A M  we have 

and  

277 277 

L L 
P (  A M,  D )  = - - MOD + -- ( - A M D  + N' - N - )  (56 )  

from which one can see that cHG = 1 and that the scaling dimensions are 

1 
x ( A M ,  D )  = (AM)'+ ( [ (A) )2D '  

( 2 5( 11) ' (57 )  

s ( A M ,  D )  = - A M D  ( 5 8 )  

which is the result of Bogoliubov er a1 (1987) and Berkovich and Murthy (1988) also. 
We note that in this case the 2k ,  for the finite and infinite system are equal, i.e. 
2kF = 277M0/ L. 
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For arbitrary L, however, the 2kF of the finite system is 2rrM0/L while that of the 
infinite one is 27rp(h),  and will in general take different values. This difference has 
the following reason. While in the infinite system 2k ,  is determined only by h, in the 
finite L case 2 k F  is also subject to the constraint that the number of particles in the 
system should be an integer. The relation between the critical indices and the spectrum 
of the Hamiltonian for finite L has been established through the conformal mapping 
of the plane onto a strip of width L. Our result shows that this relation holds only if 
the mapping does not change 2kF, and this is not true in general for any value of L. 

The case of the Heisenberg chain is somewhat more complicated because the chain 
length can take only integer values, i.e. for arbitrary h, hence p ( h ) ,  the conformal 
form cannot be recovered. It can be recovered only if p ( h )  = p / q  with 2 p  < q and 
p ,  q =relative prime integers. Then the allowable values of N are N = q N '  with N'  
integer and  M O  = p N '  is to be chosen. Denoting M - MO = A M  we have 

1 
E ( A M ,  D )  = NE,+- 2 r r u F (  (AM)2+( ( (L4) )2D2-+3+ N++ N -  

N (25(A))2 

27rp 277 
4 N 

P ( A M ,  D )  =- D+- ( A M D -  M t +  N - ) ,  

(59) 

These equations give 2kF=2rrp/q ,  c = 1 and the same scaling indices as in (57) and 
(58). We observe that the scaling indices are not constants but functions of the coupling 
and  of the magnetic field as expected from general considerations when c = 1. But in 
order to satisfy the requirement p ( h )  = p /  q, cos 0 and h cannot be changed indepen- 
dently: this means that the marginal operators in the problem (cf Cardy 1987) should 
also contain the magnetic field and the magnetisation. 

In commenting on the requirement p ( h ) = p / q  we first recall the case of zero 
magnetic field. There we have for h = 0, S' = 0 and p ( h  = 0) =f. To recover the 
structure of (591, N should be even (this condition is well known but has never been 
emphasised). In particular this restriction shows up  in the construction of the con- 
tinuum limit of the problem. As Luther (1980) has shown, in taking the continuum 
limit of the fermionised model, the local field operators $I,z(x) should be defined in 
terms of the lattice fermion operators a, and the lattice spacing s as 

In the limits s + 0, sN + L, 2js + x this construction when applied to the X X Z  chain 
yields the massless Thirring model. The important point is that two sites of the lattice 
correspond to one point in the continuum limit. Therefore the requirement that N 
ought to be even appears as a natural one. If N is odd, the above procedure leads 
again to the massless Thirring model but with an extra term corresponding to the a, 
which does not belong to any of the operators $,,>(x). This extra term is a kind of 
defect operator which shifts the energy levels by an  amount of order 1/L. 

Generalising the above picture for the case h # 0, ~ ( h )  = p / q  we think that the 
continuum limit should be constructed as follows. The chain should be cut into blocks 
of q sites. The local field operators should be associated with these blocks and should 
be the combinations of operators belonging to the q sites in a block. This is strongly 
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supported by the fact that certain correlation functions show oscillations with period 
2kF=2.rrp/q, indicating that smooth fields can be obtained by averaging over one 
period of q sites. If h is such that p ( h )  is irrational the period of the oscillations and  
the period of the lattice are incommensurate and this averaging procedure cannot be 
properly defined. Hence, if we want to construct the continuum limit for a system of 
finite size we would have difficulties to define consistently the field operators because 
the period of the oscillations is determined by 2.rrM0/N and changes with N.  

In the case of the X X  chain (i.e. cos 6 = 0) the continuum limit can be explicitly 
constructed (cf appendix 2). The local fields should then be defined as 

with x = nqs. Two of these fields, the ones with p = 1 and p = q corresponding to 
smooth variations in the amplitudes of fields oscillating with k ,  and - k F ,  respectively, 
are massless. The others acquire masses in the limit s -f 0, which diverge as l/s. These 
infinitely massive fields d o  not affect the dynamics of the massless ones, and they can 
be ignored since they correspond to modes deep in the Fermi sea or  high above the 
Fermi level. The resulting Hamiltonian is the one of two fermion fields with linear 
dispersion corresponding to left and right moving particles. 

5. Summary 

In  the present work we have demonstrated that the spectrum of the one-dimensional 
Bose gas in the presence of a chemical potential and the spectrum of the Heisenberg 
chain in a n  external magnetic field is not immediately of the conformal form: the terms 
proportional to the inverse of the size of the system depend also in a non-analytic way 
on the size. This effect is not a consequence of the Bethe ansatz; rather it follows from 
the dependence of the number of particles or  spin waves in the ground state on the 
external field. Thus the effect is expected to show up  in any such system in which the 
number of particles is determined by an external parameter. 

With these non-analytic finite-size effects present it is not possible to extract the 
conformal invariants from the spectrum of the finite-size system. Thus one must be 
careful with finite-size scaling. 

We show that the conformal structure of the spectrum can be restored, provided 
some additional conditions imposed on the external field and the size of the system 
are also satisfied. In the case of the Bose gas one must require that the Fermi momentum 
of the finite and infinite system are equal. At a given chemical potential this can be 
ensured if we restrict the length to take only discrete values depending on the chemical 
potential. 

For the Heisenberg chain in an arbitrary magnetic field the conformal form of the 
spectrum cannot be recovered at any chain length unless the magnetisation density of 
the infinite system (determined by the magnetic field) is a rational number. Also in 
this case the chain length can only take some definite discrete values. The Heisenberg 
model, as a lattice system, cannot be conformally invariant by itself. Only certain 
continuum limits of it can be conformally invariant. We argue that this conformally 
invariant continuum limit can only be constructed at definitive combinations of the 
coupling constant and magnetic field (at which the magnetisation density is rational). 
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In other words, the Heisenberg chain is a proper discretisation of a continuum field 
theory only at these combinations. 

At those values of the magnetic field where the spectrum is of the conformal form, 
the 2k, oscillations and the lattice are commensurate. Moreover the allowable chain 
lengths are always integer multiples of the period determined by 2k,. We therefore 
propose that the conformally invariant continuum limit should be constructed based 
on the Fourier transform of certain blocks of operators, which are defined on the 
lattice sites. 

Finally we note that recently Henkel et a1 (1989) have observed similar phenomena 
in the Ising model with defects, where they have found cases for which a conformally 
invariant structure is only recovered if certain ratios are rational numbers. 
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Appendix 1. Non-analytic finite-size effect in the X X  spin chain 

We study the effect of a magnetic field h on a X X  spin chain of N sites and illustrate 
the findings of the main text through a simple and exact calculation for a non-interacting 
system. 

The Hamiltonian is given by 

(Al.1) 

where periodic boundary conditions are assumed for the operators S:, S,- and Sf.  
As is easily seen, the number of down spins on the chain is a constant of the motion. 

Consider first the problem of one spin down defined by 
Y 

I & ) =  C W ) l T . . . J . . . T )  (A1.2) 
/ = 1  

where the down spin is at the j t h  site. It is an  eigenstate of 2 with eigenvalue E if 

W )  = exp(ikj) (A1.3) 

E ( ~ ) = - ~ ( c o s  k - h ) .  (A1.4) 

Since there cannot be two down spins at the same site, the wavefunction for M 
down spins $ ( j , ,  j 2 ,  . . . , j M ) ,  where j ,  < j, < . . . < j,, must have a node whenever two 
arguments are equal. Otherwise it always describes an assembly of independent down 
spins. Thus it is simply of determinantal form (Slater determinant). 

Now requiring periodic boundary conditions for all the arguments of + ( j , ,  . . . , j,) 
means that under the shift j 7 + j , +  N the wavefunction acquires a phase factor 
exp(ik,N).  However, to execute this shift we must move the down spin at j ,  through 
the remaining ( M  - 1) down spins. Each time we go through one down spin we have 
a phase (-1). The wavefunction would remain invariant if 

exp( ik ,N)  = (-1) s = 1 , 2  , . . . ,  M. (A1.5) 
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Consequently the allowable k ,  are 

2 r /  N x integer 
r/ N x odd-integer 

i f  M odd 
if M even. 

(A1.6) 

We can now calculate the ground-state energy of M down spins by minimising the 
total energy of the filled negative-energy states. Suppose M even to fix the ideas, the 
case of M odd presents no difficulty. This ground-state energy E,( N ,  h )  is 

.M 

Eo( N,  h )  = -2 C (COS k ,  - h ) .  
r = l  

Summing on the values of k ,  given by (A1.6) we find an energy density 

2 sin( r p  j 
N sin( r/ N )  

+2hp %(P, h, N )  = - 

(A1.7) 

(A1.8) 

where p = M / N  is the density of down spins. It is clear that in the thermodynamic 
limit we have 

( A l . 9 )  s , ( p ,  h, coj = - 2  sin r p / r + 2 h p  

which has a minimum at p = p o  defined by 

COS r p o  = h. (A1 . lo )  

Thus p o  = MO/ N is real for lhl< 1 .  For N very large, we expect p to be very close to 
po, i.e. up  to the order 1/N. Then we expand eO(p ,  h, N )  with respect to the two 
independent variables ( p  - po) and 1 /  N :  

2 sin r p o  2 sin r p o  r2 
- [ 1 - 3 ( M  - MO)?] 

r 

+ higher-order terms. ( A l . l l )  

There are no terms in ( p  - po)  or 1 /  N because of the condition (Al .10) .  Equation 
( A l . l l )  is a special case of ( 5 1 ) .  It shows clearly that the prediction of conformal 
invariance is only realised if one chooses h in (A1.lO) so that p o  is a rational number 
p / q .  Then one may choose the number of sites N as a multiple of q. Then M o = p N ’  
and the quantity ( M  - MO)’ does have a minimum at zero. 

Appendix 2. Constructing the continuum limit of the X X  chain in a magnetic field 

We shall begin with the fermionised version of the X X  chain in a magnetic field: 

(A2.1) 

where c: and  c, are the usual fermion operators. 

the conditions 
We shall assume that the number of fermions MO and the number of sites N satisfy 

N = qN‘ MO = pN’  (A2.2) 

where p and q are integers and  relative primes of each other, satisfying p < q / 2 .  The 
Fermi momentum is defined by 

(A2.3) 2 kF = 2 r M o /  N = 2 r p /  q. 
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Note that k, is not a real momentum in the sense that, if MO is even then antiperiodic 
boundary conditions are required (cf (A1.6)) but kF corresponds to periodic boundary 
conditions: 

k -e(%?) 
F - N  2 * 

Similarly, if MO is odd then periodic boundary conditions are required but 

where [ ] again denotes the integer part of the expression in brackets. 
Introducing a q-component fermion representation 

4 v ( n )  = exp{ik,[(n - l ) q +  ~ l ~ ~ ~ ~ n - l i q - L , l  v =  1 , .  . . , q 

we can express 2 as 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

( A2.10) 

Performing a canonical transformation A, which diagonalises the matrix M we can 

cL,(n) =c ( A - ’ ) w Y 4 Y ( n )  (A2.11) 

express the Hamiltonian 2 in terms of new fermion operators: 

Y 

where the matrix A-’ is given by 

1 
( J Z - ’ ) , ~  = - exp(2ikFpv). (A2.12) 

J;; 
Then we have 

- I  
D;,, = - exp[ - 2i kF( v - i)] 

D’’ =- exp[2ikF(p -;)I. 

2q 

PLY 29 
I 

(A2.13) 

(A2.14) 

(A2.15) 

( A2.16) 

We are now in a position to construct the continuum limit of the theory. To this end 
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let s be the lattice constant and set 
sqN’= L 
sqn = x  

sq = d x  (the length of one block). 
In the limit s+O and N+co we obtain the following: 

: + 5,’ 
n 

(A2.17) 
(A2.18) 
(A2.19) 

(A2.20) 

(A2.2 1 ) 
(A2.22) 

(A2.23) 

Also we wish to have a fixed Fermi velocity in x space, i.e. utscrete  s + uF. Now since 
on the lattice uFscrete== I this would mean that the product Is tends to a finite limit 1‘. 

Taking into account all of these considerations, we see that the continuum limit 
Hamiltonian on a finite interval of length L is 

a 
+ I , ( n + 1 ) - + p ( n ) ~ ( s q ! . ” 2 a x  4$(x). 

where 
m: = { h’ - C0S[2k~(p -$)I} 

1 
0:” =-{exp[2ikF(p -+)I -exp[ -2ikF(v-t)]}. 

2q 

(A2.24) 

(A2.25) 

(A2.26) 

This entire procedure makes sense only if we have h’ = cos( kF). Otherwise all masses 
are of order - l/s. Then the modes v = 1 and v = q are massless while the other modes 
become very massive (of order - l / s ) .  

In the s + O  limit these very massive modes do  not intervene in the dynamics of 
the massless ones. This can be seen as follows. Rewriting the integrand of 5“‘ in 
terms of Fourier components, one can look for the normal modes in momentum space. 
This amounts to diagonalising the matrix: 

- k U F  ku+ 
(A2.27) 

kv’ kuF 

where we have defined 

(A2.28) 

(A2.29) 

(A2.30) 

(A2.31) 
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Here m is a ( q  - 2) x ( q  - 2) matrix with non-zero diagonal elements which are propor- 
tional to l /s .  

We look for the first eigenvector in the form 

(A2.32) 

x being a ( q  -2)  column vector. Then the eigenvalue equations with eigenvalue -kv;  
are 

- v F + u  x =  -v; (A2.33) 

US k - 'm.  x + y v =  -v;x (A2.34) 

v ' x +  U F y  = -0:y. (A2.35) 

Solving these equations we get readily 

(A2.36) 

(A2.37) 

The inverse matrix in the last equation exists. We thus obtain to the order s the 
following: 

x-s  Y - S  (A2.38) 

v;= U F + 0 ( S ) .  

So we see that, in the s -+ 0 limit, the mode v = 1 becomes totally independent from 
the others as x +  0 and y -+ 0. Similarly one can show that the mode with v = q will 
also be independent of the others when s -+ 0. Thus the modes v = 2, . . . , q - 1 can be 
omitted in the continuum limit. Finally we can write 

with u F =  I ' s in (kF) .  
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